Logo Search packages:      
Sourcecode: tbb version File versions  Download package

grid.cpp

/*
    Copyright 2005-2007 Intel Corporation.  All Rights Reserved.

    This file is part of Threading Building Blocks.

    Threading Building Blocks is free software; you can redistribute it
    and/or modify it under the terms of the GNU General Public License
    version 2 as published by the Free Software Foundation.

    Threading Building Blocks is distributed in the hope that it will be
    useful, but WITHOUT ANY WARRANTY; without even the implied warranty
    of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Threading Building Blocks; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

    As a special exception, you may use this file as part of a free software
    library without restriction.  Specifically, if other files instantiate
    templates or use macros or inline functions from this file, or you compile
    this file and link it with other files to produce an executable, this
    file does not by itself cause the resulting executable to be covered by
    the GNU General Public License.  This exception does not however
    invalidate any other reasons why the executable file might be covered by
    the GNU General Public License.
*/

/*
    The original source for this example is
    Copyright (c) 1994, 1995, 1996, 1997  John E. Stone
    All rights reserved.

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions
    are met:
    1. Redistributions of source code must retain the above copyright
       notice, this list of conditions and the following disclaimer.
    2. Redistributions in binary form must reproduce the above copyright
       notice, this list of conditions and the following disclaimer in the
       documentation and/or other materials provided with the distribution.
    3. All advertising materials mentioning features or use of this software
       must display the following acknowledgement:
       This product includes software developed by John E. Stone
    4. The name of the author may not be used to endorse or promote products
       derived from this software without specific prior written permission.

    THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
    OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
    WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
    DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    SUCH DAMAGE.
*/

/*
 * grid.c - spatial subdivision efficiency structures
 *
 * $Id: grid.cpp,v 1.2 2007/02/22 17:54:15 dpoulsen Exp $
 * 
 */

#include "machine.h"
#include "types.h"
#include "macros.h"
#include "vector.h"
#include "intersect.h"
#include "util.h"

#define GRID_PRIVATE
#include "grid.h"

#ifndef cbrt
#define     cbrt(x)     ((x) > 0.0 ? pow((double)(x), 1.0/3.0) : \
                          ((x) < 0.0 ? -pow((double)-(x), 1.0/3.0) : 0.0))

#define     qbrt(x)     ((x) > 0.0 ? pow((double)(x), 1.0/4.0) : \
                          ((x) < 0.0 ? -pow((double)-(x), 1.0/4.0) : 0.0))

#endif

static object_methods grid_methods = {
  (void (*)(void *, void *))(grid_intersect),
  (void (*)(void *, void *, void *, void *))(NULL),
  grid_bbox, 
  grid_free 
};

object * newgrid(int xsize, int ysize, int zsize, vector min, vector max) {
  grid * g;

  g = (grid *) rt_getmem(sizeof(grid));
  memset(g, 0, sizeof(grid));  

  g->methods = &grid_methods;
  g->id = new_objectid();

  g->xsize = xsize;
  g->ysize = ysize;
  g->zsize = zsize;

  g->min = min;
  g->max = max;

  VSub(&g->max, &g->min, &g->voxsize);
  g->voxsize.x /= (flt) g->xsize; 
  g->voxsize.y /= (flt) g->ysize; 
  g->voxsize.z /= (flt) g->zsize; 

  g->cells = (objectlist **) rt_getmem(xsize*ysize*zsize*sizeof(objectlist *));
  memset(g->cells, 0, xsize*ysize*zsize * sizeof(objectlist *));

/* fprintf(stderr, "New grid, size: %8d %8d %8d\n", g->xsize, g->ysize, g->zsize); */

  return (object *) g;
}

static int grid_bbox(void * obj, vector * min, vector * max) {
  grid * g = (grid *) obj;
 
  *min = g->min;
  *max = g->max;

  return 1;
}

static void grid_free(void * v) {
  int i, numvoxels;
  grid * g = (grid *) v;
 
  /* loop through all voxels and free the object lists */
  numvoxels = g->xsize * g->ysize * g->zsize; 
  for (i=0; i<numvoxels; i++) {
    objectlist * lcur, * lnext;

    lcur = g->cells[i];
    while (lcur != NULL) {
      lnext = lcur->next;
      free(lcur);
    }
  }

  /* free the grid cells */ 
  free(g->cells);

  /* free all objects on the grid object list */
  free_objects(g->objects);   

  free(g);
}

static void globalbound(object ** rootlist, vector * gmin, vector * gmax) {
  vector min, max;
  object * cur;

  if (*rootlist == NULL)  /* don't bound non-existant objects */
    return;

  gmin->x =  FHUGE;   gmin->y =  FHUGE;   gmin->z =  FHUGE;
  gmax->x = -FHUGE;   gmax->y = -FHUGE;   gmax->z = -FHUGE;

  cur=*rootlist;
  while (cur != NULL)  {  /* Go! */
    min.x = -FHUGE; min.y = -FHUGE; min.z = -FHUGE;
    max.x =  FHUGE; max.y =  FHUGE; max.z =  FHUGE;

    if (cur->methods->bbox((void *) cur, &min, &max)) {
      gmin->x = MYMIN( gmin->x , min.x);
      gmin->y = MYMIN( gmin->y , min.y);
      gmin->z = MYMIN( gmin->z , min.z);

      gmax->x = MYMAX( gmax->x , max.x);
      gmax->y = MYMAX( gmax->y , max.y);
      gmax->z = MYMAX( gmax->z , max.z);
    }

    cur=(object *)cur->nextobj;
  }
}


static int cellbound(grid *g, gridindex *index, vector * cmin, vector * cmax) {
  vector min, max, cellmin, cellmax;
  objectlist * cur;
  int numinbounds = 0;

  cur = g->cells[index->z*g->xsize*g->ysize + index->y*g->xsize + index->x]; 

  if (cur == NULL)  /* don't bound non-existant objects */
    return 0;

  cellmin.x = voxel2x(g, index->x); 
  cellmin.y = voxel2y(g, index->y); 
  cellmin.z = voxel2z(g, index->z); 

  cellmax.x = cellmin.x + g->voxsize.x;
  cellmax.y = cellmin.y + g->voxsize.y;
  cellmax.z = cellmin.z + g->voxsize.z;

  cmin->x =  FHUGE;   cmin->y =  FHUGE;   cmin->z =  FHUGE;
  cmax->x = -FHUGE;   cmax->y = -FHUGE;   cmax->z = -FHUGE;

  while (cur != NULL)  {  /* Go! */
    min.x = -FHUGE; min.y = -FHUGE; min.z = -FHUGE;
    max.x =  FHUGE; max.y =  FHUGE; max.z =  FHUGE;

    if (cur->obj->methods->bbox((void *) cur->obj, &min, &max)) {
      if ((min.x >= cellmin.x) && (max.x <= cellmax.x) &&
          (min.y >= cellmin.y) && (max.y <= cellmax.y) &&
          (min.z >= cellmin.z) && (max.z <= cellmax.z)) {
      
        cmin->x = MYMIN( cmin->x , min.x);
        cmin->y = MYMIN( cmin->y , min.y);
        cmin->z = MYMIN( cmin->z , min.z);

        cmax->x = MYMAX( cmax->x , max.x);
        cmax->y = MYMAX( cmax->y , max.y);
        cmax->z = MYMAX( cmax->z , max.z);
      
        numinbounds++;
      }
    }

    cur=cur->next;
  }
 
  /* in case we get a 0.0 sized axis on the cell bounds, we'll */
  /* use the original cell bounds */
  if ((cmax->x - cmin->x) < EPSILON) {
    cmax->x += EPSILON;
    cmin->x -= EPSILON;
  }
  if ((cmax->y - cmin->y) < EPSILON) {
    cmax->y += EPSILON;
    cmin->y -= EPSILON;
  }
  if ((cmax->z - cmin->z) < EPSILON) {
    cmax->z += EPSILON;
    cmin->z -= EPSILON;
  }

  return numinbounds;
}

static int countobj(object * root) {
  object * cur;     /* counts the number of objects on a list */
  int numobj;

  numobj=0;
  cur=root;

  while (cur != NULL) {
    cur=(object *)cur->nextobj;
    numobj++;
  }
  return numobj;
}

static int countobjlist(objectlist * root) {
  objectlist * cur;
  int numobj;

  numobj=0; 
  cur = root;

  while (cur != NULL) {
    cur = cur->next;
    numobj++;
  }
  return numobj;
}

int engrid_scene(object ** list) {
  grid * g;
  int numobj, numcbrt;
  vector gmin, gmax;
  gridindex index;
 
  if (*list == NULL)
    return 0;

  numobj = countobj(*list);

fprintf(stderr, "Scene contains %d bounded objects.\n", numobj);

  if (numobj > 16) {
    numcbrt = (int) cbrt(4*numobj);
    globalbound(list, &gmin, &gmax);

    g = (grid *) newgrid(numcbrt, numcbrt, numcbrt, gmin, gmax);
    engrid_objlist(g, list);

    numobj = countobj(*list);
    g->nextobj = *list;
    *list = (object *) g;

    /* now create subgrids.. */
    for (index.z=0; index.z<g->zsize; index.z++) {
      for (index.y=0; index.y<g->ysize; index.y++) {
        for (index.x=0; index.x<g->xsize; index.x++) {
          engrid_cell(g, &index);
        }
      }
    } 
  }

  return 1;
}


void engrid_objlist(grid * g, object ** list) {
  object * cur, * next, **prev;

  if (*list == NULL) 
    return;
  
  prev = list; 
  cur = *list;

  while (cur != NULL) {
    next = (object *)cur->nextobj;

    if (engrid_object(g, cur)) 
      *prev = next;
    else 
      prev = (object **) &cur->nextobj;

    cur = next;
  } 
}

static int engrid_cell(grid * gold, gridindex *index) {
  vector gmin, gmax, gsize;
  flt len;
  int numobj, numcbrt, xs, ys, zs;
  grid * g;
  objectlist **list;
  objectlist * newobj;

  list = &gold->cells[index->z*gold->xsize*gold->ysize + 
                     index->y*gold->xsize  + index->x];

  if (*list == NULL)
    return 0;

  numobj =  cellbound(gold, index, &gmin, &gmax);

  VSub(&gmax, &gmin, &gsize);
  len = 1.0 / (MYMAX( MYMAX(gsize.x, gsize.y), gsize.z ));
  gsize.x *= len;  
  gsize.y *= len;  
  gsize.z *= len;  

  if (numobj > 16) {
    numcbrt = (int) cbrt(2*numobj); 
    
    xs = (int) ((flt) numcbrt * gsize.x);
    if (xs < 1) xs = 1;
    ys = (int) ((flt) numcbrt * gsize.y);
    if (ys < 1) ys = 1;
    zs = (int) ((flt) numcbrt * gsize.z);
    if (zs < 1) zs = 1;

    g = (grid *) newgrid(xs, ys, zs, gmin, gmax);
    engrid_objectlist(g, list);

    newobj = (objectlist *) rt_getmem(sizeof(objectlist));    
    newobj->obj = (object *) g;
    newobj->next = *list;
    *list = newobj;

    g->nextobj = gold->objects;
    gold->objects = (object *) g;
  }

  return 1;
}

static int engrid_objectlist(grid * g, objectlist ** list) {
  objectlist * cur, * next, **prev;
  int numsucceeded = 0; 

  if (*list == NULL) 
    return 0;
  
  prev = list; 
  cur = *list;

  while (cur != NULL) {
    next = cur->next;

    if (engrid_object(g, cur->obj)) {
      *prev = next;
      free(cur);
      numsucceeded++;
    }
    else {
      prev = &cur->next;
    }

    cur = next;
  } 

  return numsucceeded;
}



static int engrid_object(grid * g, object * obj) {
  vector omin, omax; 
  gridindex low, high;
  int x, y, z, zindex, yindex, voxindex;
  objectlist * tmp;
 
  if (obj->methods->bbox(obj, &omin, &omax)) { 
    if (!pos2grid(g, &omin, &low) || !pos2grid(g, &omax, &high)) {
      return 0; /* object is not wholly contained in the grid */
    }
  }
  else {
    return 0; /* object is unbounded */
  }

  /* add the object to the complete list of objects in the grid */
  obj->nextobj = g->objects;
  g->objects = obj;

  /* add this object to all voxels it inhabits */
  for (z=low.z; z<=high.z; z++) {
    zindex = z * g->xsize * g->ysize;
    for (y=low.y; y<=high.y; y++) {
      yindex = y * g->xsize;
      for (x=low.x; x<=high.x; x++) {
        voxindex = x + yindex + zindex; 
        tmp = (objectlist *) rt_getmem(sizeof(objectlist));
        tmp->next = g->cells[voxindex];
        tmp->obj = obj;
        g->cells[voxindex] = tmp;
      }
    }
  }
 
  return 1;
}

static int pos2grid(grid * g, vector * pos, gridindex * index) {
  index->x = (int) ((pos->x - g->min.x) / g->voxsize.x);
  index->y = (int) ((pos->y - g->min.y) / g->voxsize.y);
  index->z = (int) ((pos->z - g->min.z) / g->voxsize.z);
  
  if (index->x == g->xsize)
    index->x--;
  if (index->y == g->ysize)
    index->y--;
  if (index->z == g->zsize)
    index->z--;

  if (index->x < 0 || index->x > g->xsize ||
      index->y < 0 || index->y > g->ysize ||
      index->z < 0 || index->z > g->zsize) 
    return 0;

  if (pos->x < g->min.x || pos->x > g->max.x ||
      pos->y < g->min.y || pos->y > g->max.y ||
      pos->z < g->min.z || pos->z > g->max.z) 
    return 0; 

  return 1;
}


/* the real thing */
static void grid_intersect(grid * g, ray * ry) {
  flt tnear, tfar, offset;
  vector curpos, tmax, tdelta, pdeltaX, pdeltaY, pdeltaZ, nXp, nYp, nZp;
  gridindex curvox, step, out; 
  int voxindex;
  objectlist * cur;

  if (ry->flags & RT_RAY_FINISHED)
    return;

  if (!grid_bounds_intersect(g, ry, &tnear, &tfar))
    return;
 
  if (ry->maxdist < tnear)
    return;
 
  curpos = Raypnt(ry, tnear); 
  pos2grid(g, &curpos, &curvox);
  offset = tnear;

  /* Setup X iterator stuff */
  if (fabs(ry->d.x) < EPSILON) {
    tmax.x = FHUGE;
    tdelta.x = 0.0;
    step.x = 0;
    out.x = 0; /* never goes out of bounds on this axis */
  }
  else if (ry->d.x < 0.0) {
    tmax.x = offset + ((voxel2x(g, curvox.x) - curpos.x) / ry->d.x); 
    tdelta.x = g->voxsize.x / - ry->d.x;
    step.x = out.x = -1;
  }
  else {
    tmax.x = offset + ((voxel2x(g, curvox.x + 1) - curpos.x) / ry->d.x);
    tdelta.x = g->voxsize.x / ry->d.x;
    step.x = 1;
    out.x = g->xsize;
  }

  /* Setup Y iterator stuff */
  if (fabs(ry->d.y) < EPSILON) {
    tmax.y = FHUGE;
    tdelta.y = 0.0; 
    step.y = 0;
    out.y = 0; /* never goes out of bounds on this axis */
  }
  else if (ry->d.y < 0.0) {
    tmax.y = offset + ((voxel2y(g, curvox.y) - curpos.y) / ry->d.y);
    tdelta.y = g->voxsize.y / - ry->d.y;
    step.y = out.y = -1;
  }
  else {
    tmax.y = offset + ((voxel2y(g, curvox.y + 1) - curpos.y) / ry->d.y);
    tdelta.y = g->voxsize.y / ry->d.y;
    step.y = 1;
    out.y = g->ysize;
  }

  /* Setup Z iterator stuff */
  if (fabs(ry->d.z) < EPSILON) {
    tmax.z = FHUGE;
    tdelta.z = 0.0; 
    step.z = 0;
    out.z = 0; /* never goes out of bounds on this axis */
  }
  else if (ry->d.z < 0.0) {
    tmax.z = offset + ((voxel2z(g, curvox.z) - curpos.z) / ry->d.z);
    tdelta.z = g->voxsize.z / - ry->d.z;
    step.z = out.z = -1;
  }
  else {
    tmax.z = offset + ((voxel2z(g, curvox.z + 1) - curpos.z) / ry->d.z);
    tdelta.z = g->voxsize.z / ry->d.z;
    step.z = 1;
    out.z = g->zsize;
  }

  pdeltaX = ry->d;
  VScale(&pdeltaX, tdelta.x);
  pdeltaY = ry->d;
  VScale(&pdeltaY, tdelta.y);
  pdeltaZ = ry->d;
  VScale(&pdeltaZ, tdelta.z);

  nXp = Raypnt(ry, tmax.x);
  nYp = Raypnt(ry, tmax.y);
  nZp = Raypnt(ry, tmax.z);

  voxindex = curvox.z*g->xsize*g->ysize + curvox.y*g->xsize + curvox.x; 
  while (1) {
    if (tmax.x < tmax.y && tmax.x < tmax.z) {
      cur = g->cells[voxindex];
      while (cur != NULL) {
        if (ry->mbox[cur->obj->id] != ry->serial) {
          ry->mbox[cur->obj->id] = ry->serial; 
          cur->obj->methods->intersect(cur->obj, ry);
        }
        cur = cur->next;
      }
      curvox.x += step.x;
      if (ry->maxdist < tmax.x || curvox.x == out.x) 
        break; 
      voxindex += step.x;
      tmax.x += tdelta.x;
      curpos = nXp;
      nXp.x += pdeltaX.x;
      nXp.y += pdeltaX.y;
      nXp.z += pdeltaX.z;
    }
    else if (tmax.z < tmax.y) {
      cur = g->cells[voxindex];
      while (cur != NULL) {
        if (ry->mbox[cur->obj->id] != ry->serial) {
          ry->mbox[cur->obj->id] = ry->serial; 
          cur->obj->methods->intersect(cur->obj, ry);
        }
        cur = cur->next;
      }
      curvox.z += step.z;
      if (ry->maxdist < tmax.z || curvox.z == out.z) 
        break;
      voxindex += step.z*g->xsize*g->ysize;
      tmax.z += tdelta.z;
      curpos = nZp;
      nZp.x += pdeltaZ.x;
      nZp.y += pdeltaZ.y;
      nZp.z += pdeltaZ.z;
    }
    else {
      cur = g->cells[voxindex];
      while (cur != NULL) {
        if (ry->mbox[cur->obj->id] != ry->serial) {
          ry->mbox[cur->obj->id] = ry->serial; 
          cur->obj->methods->intersect(cur->obj, ry);
        }
        cur = cur->next;
      }
      curvox.y += step.y;
      if (ry->maxdist < tmax.y || curvox.y == out.y) 
        break;
      voxindex += step.y*g->xsize;
      tmax.y += tdelta.y;
      curpos = nYp;
      nYp.x += pdeltaY.x;
      nYp.y += pdeltaY.y;
      nYp.z += pdeltaY.z;
    }

    if (ry->flags & RT_RAY_FINISHED)
      break;
  }
}

static void voxel_intersect(grid * g, ray * ry, int voxindex) {
  objectlist * cur;

  cur = g->cells[voxindex];
  while (cur != NULL) {
    cur->obj->methods->intersect(cur->obj, ry);
    cur = cur->next;
  }
}

static int grid_bounds_intersect(grid * g, ray * ry, flt *near, flt *far) {
  flt a, tx1, tx2, ty1, ty2, tz1, tz2;
  flt tnear, tfar;

  tnear= -FHUGE;
  tfar= FHUGE;

  if (ry->d.x == 0.0) {
    if ((ry->o.x < g->min.x) || (ry->o.x > g->max.x)) return 0;
  }
  else {
    tx1 = (g->min.x - ry->o.x) / ry->d.x;
    tx2 = (g->max.x - ry->o.x) / ry->d.x;
    if (tx1 > tx2) { a=tx1; tx1=tx2; tx2=a; }
    if (tx1 > tnear) tnear=tx1;
    if (tx2 < tfar)   tfar=tx2;
  }
  if (tnear > tfar) return 0;
  if (tfar < 0.0) return 0;

  if (ry->d.y == 0.0) {
    if ((ry->o.y < g->min.y) || (ry->o.y > g->max.y)) return 0;
  }
  else {
    ty1 = (g->min.y - ry->o.y) / ry->d.y;
    ty2 = (g->max.y - ry->o.y) / ry->d.y;
    if (ty1 > ty2) { a=ty1; ty1=ty2; ty2=a; }
    if (ty1 > tnear) tnear=ty1;
    if (ty2 < tfar)   tfar=ty2;
  }
  if (tnear > tfar) return 0;
  if (tfar < 0.0) return 0;

  if (ry->d.z == 0.0) {
    if ((ry->o.z < g->min.z) || (ry->o.z > g->max.z)) return 0;
  }
  else {
    tz1 = (g->min.z - ry->o.z) / ry->d.z;
    tz2 = (g->max.z - ry->o.z) / ry->d.z;
    if (tz1 > tz2) { a=tz1; tz1=tz2; tz2=a; }
    if (tz1 > tnear) tnear=tz1;
    if (tz2 < tfar)   tfar=tz2;
  }
  if (tnear > tfar) return 0;
  if (tfar < 0.0) return 0;

  *near = tnear;
  *far = tfar; 
  return 1;
}

Generated by  Doxygen 1.6.0   Back to index